> @
s

CLOUD ALCHEMY

MCP Filesystem Agent

Overview

Microsoft
Azure

@ OpenAl

Query
l \ =
Tool call/ Response Commands/Response
e i >
UT' I Filesystem MCP Server File System
Response

The application provides an interactive interface where users can:
1. Navigate local directories using natural language commands.
2. List directories and files
3. Read file contents

4. Perform basic file operations

Prerequisites

Before you begin, ensure you have the following installed:
e Python 3.8 or higher
e Node.js and npx (for the MCP filesystem server)
e Azure OpenAl API access

e uv package manager (faster alternative to pip)

Project Setup
Installing uv Package Manager

If you don't have uv installed yet:

pip install uv

.o

CLOUD ALCHEMY

Creating a Project Environment

Create a new project environment using uv:

uv init 1lamaMCP_project
cd 1lamaMCP_project

Installing Required Packages

Install all required packages using uv:

uv add dotenv llama-index-llms-azure-openai==0.3.2 llama-index-core==0.12.36 llama-index-
tools-mcp==0.1.2 "mcp[cli]>=1.6.0"

Environment Configuration

Create a .env file in your project directory with the following Azure OpenAl configuration:

AZURE_OPENAI_API_KEY=your_azure_openai_api_key here
AZURE_OPENAI_ENDPOINT=your_azure_endpoint_here
AZURE_OPENAI_API_VERSION=your_api_version_here

Running the Application
1. Place the llamaMCP.py file in your project directory

2. Update the path in the StdioServerParameters to match your desired root
directory:

server_params = StdioServerParameters(
command="npx",
args=[
"_y")
"@modelcontextprotocol/server-filesystem",
"D:/YourDesiredDirectory"

15)

3. Run the application:

python 1lamaMCP.py

4. Enter your queries when prompted

Example Queries
o '"List allfiles in the current directory"
e "Navigate to Documents/Reports"
e "Read config.json"

¢ "Show me the contents of readme.txt"

.o

CLOUD ALCHEMY

¢ "Whatfiles are in the images folder?"

Understanding the Code
Let's break down the main components of the IlamaMCP.py script:

1. Imports and Configuration

import asyncio

import os

from dotenv import load_dotenv

from 1llama_index.llms.azure_openai import AzureOpenAIl
... more imports

This section imports necessary libraries and loads environment variables from your .env
file.

2. Azure OpenAl Setup

11lm = AzureOpenAI(
api_key=AZURE_OPENAI_API_KEY,
azure_endpoint=AZURE_OPENAI_ENDPOINT,
deployment_name=AZURE_OPENAI_DEPLOYMENT,
api_version=AZURE_OPENAI_API_VERSION,

This section initializes the Azure OpenAl LLM using your API credentials.

3. MCP Filesystem Server

server_params = StdioServerParameters(
command="npx",
args=["-y", "@modelcontextprotocol/server-filesystem", "allowed-directory"],

This configures the Model Context Protocol (MCP) server for filesystem access. The
server allows the application to interact with files on your system.

4. Chat Memory

memory = ChatMemoryBuffer.from_defaults(token_limit=1500)

This creates a memory buffer for the agent to maintain conversation context.
5. Main Application Loop

The main() function establishes connections and handles user interaction:

async def main():
... implementation details

This function:

CLOl'JD ALCHEMY

Sets up tools for file system by connecting to the MCP server
Creates a ReActAgent with those tools

Manages the chat loop, handling user input and displaying responses

Technical Details

MCP Tools

The application uses the Model Context Protocol (MCP) to interact with the filesystem.

Available tools include:

1
2
3
4.
5.
6
7
8
9

read_file: Read complete file contents
read_multiple_files: Read multiple files at once
write_file: Create or overwrite files

edit_file: Make selective text edits
create_directory: Create new directories
list_directory: Show directory contents
move_file: Move or rename files

search_files: Find files with patterns
get_file_info: Get file metadata details

10. list_allowed_directories: Show accessible directories

ReAct Agent

The application uses a ReAct (Reasoning and Acting) agent that:

1.

2.

3.

4.

Interprets natural language commands
Plans appropriate actions using the available tools
Executes those actions

Provides responses based on the results

